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A comprehensive numerical study of self-avoiding walks on randomly diluted lattices in two

and three dimensions is carried out.

The critical exponents v and x are calculated for various

different occupation probabilities, disorder configuration ensembles, and walk weighting schemes.
These results are analyzed and compared with those previously available. Various subtleties in the
calculation and definition of these exponents are discussed. Precise numerical values are given for
these exponents in most cases, and many new properties are recognized for them.
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I. INTRODUCTION

In the past decade, the problem of the critical behavior
of a polymer [1-3] in a disordered medium has generated
a great deal of interest [4—18]. There are many different
physical realizations which can lead to such a problem.
These include polymers trapped in a porous medium,
gel electrophoresis, and size exclusion chromatography,
which deal with the transport of polymers through mem-
branes with very small pores.

One of the simplest theoretical models of this problem
is that of a self-avoiding walk (SAW) on a percolation
cluster. The SAW incorporates many of the important
characteristics of the polymer, such as its flexible chain
behavior and short distance repulsion, while the perco-
lation cluster represents the random medium. Various
analytical methods have been used to attack this prob-
lem, such as mean field theories [13,19,20] and different
types of renormalization group calculations [4,12,13,21].
Unfortunately there has not been universal agreement
among them, due to the difficulty in including the geo-
metrical effect of self-avoidance on a disordered medium.

Because of the difficulties in approaching the prob-
lem analytically, there has been extensive computational
work done in an attempt to get a precise numerical es-
timate for many of the quantities which characterize the
SAW. Despite the fact that these numerical calculations
seem to represent a less complicated, more “brute force”
approach to the problem, they too have many subtleties.
This has led to a large volume of research with signifi-
cantly different results for seemingly very similar prob-
lems [11,12,14,15,17,18,22]. In this paper, we present
a comprehensive numerical study of this controversial
problem with a particular focus on the two critical ex-
ponents, v and x (defined below).

A SAW is usually defined as a random walk which can
never intersect itself. On a discrete lattice, the walk is
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constrained to move to a nearest neighbor site during
each time step, where the self-avoidance condition fur-
ther constrains the walk to occupy only sites which have
not been previously occupied. The resulting random pro-
cess now depends in a complicated way on the history of
the walk. Because of this, the formulas which govern
the asymptotic behavior of the SAW’s are significantly
different from those which govern those of free random
walks.

Written in terms of the quenched average, the asymp-
totic behavior for the average mean-square end-to-end
distance of a chain on a percolation cluster becomes

¢ P(c)<RN2>c
> P(C)

where the angular brackets indicate the average over all
walks from a given point on a given disorder configura-
tion, and the overbar indicates averaging over disorder.
For the latter average, C represents a disorder configura-
tion, and P(C) is the probability for that configuration
to occur. For the sake of specificity, we define C relative
to the fixed starting point of the SAW’s.

Similarly, one also expects to be able to write the ex-
pression for the average number of walks on the percola-
tion cluster as

(Rn?) = ~N%, (1)

Ez Zc P(C)ZN(C) ~ N'y—luN.

S P(0) @)

For the full lattice (p = 1), this form is known to be con-
sistent with renormalization group and other theoretical
studies and with numerical calculations of various types
[2]. The value of « for the full lattice is 43/32 [23] in two
dimensions and & 7/6 [24] in three dimensions. Note,
however, that for the case of p < 1, Zy is a random
variable with a multiplicative character so that its mean
and most probable values are far apart [14]. This makes
it intrinsically rather difficult to extract its true mean.
Moreover, under certain conditions on the distribution
of In Z [25], this form itself may have to be replaced by
another asymptotic behavior which has a stretched expo-
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nential correction term rather than the power law form
N1,

The quenched average defined here is often referred
to as one end fized [13] even though the final configura-
tional average eventually accounts for all possible start-
ing points; this is because one end of the SAW'’s is fixed
on a given disorder configuration and the final disorder
average would not be expected to change the qualitative
features of the average from any one infinite disorder con-
figuration. Such an average may be related to a polymer
solution in a disordered space with one end grafted to (or
trapped in) a particular part of the substrate. This sit-
uation should generally lead to a stretched conformation
since SAW’s with the free end in a dense region would
dominate the average entropically where such regions are
further away from the fixed end than if density did not
matter.

Another important exponent which is related to the
disorder in the system and has no full lattice analog is
X, which is defined by the fluctuations in the log of the
number of walks as follows [13]:

var[ln Zy] = (In Zy)2 — (In Zy)* ~ N2x. (3)

Recently, Le Doussal and Machta [13] proposed the exis-
tence of a new disorder fixed point for p. < p < 1 based
on renormalization group arguments. The existence of
such a regime would be characterized by a change in the
value of x for p. < p < 1 from its value at p. as well in the
value of v at p. from the corresponding values at p = 1
and p. < p < 1. Initial studies which were performed
to look for this crossover have not been fully consistent
(13,17).

The aim of this work is to provide a comprehensive
study of the two critical exponents v and x. The be-
haviors of the mean-square end-to-end distance and the
variance in ln Zy are examined for the exponents v and
x at different occupation probabilities to obtain values
both at the critical percolation threshold and in the re-
gion where p. < p < 1. Averages over all clusters and
the infinite cluster are both calculated in order to look
for differences between the two. A standard chain aver-
aging and a. kinetically weighted average are both used
to calculate the exponents. This allows a comparison
between different physical processes and also allows pre-
vious simulation results to be put in proper perspective.
The exponent v was not analyzed in this work mainly
because of the intrinsic difficulties involved in extracting
an average from a multiplicative random variable Zy. A
full analysis of the distribution of Zx and the form of Zn
will be left for a future study.

The organization of this paper is as follows. In the
next section, we provide a brief summary of the numer-
ical methods used in this work. The enumeration data
we have obtained are summarized and the exponent es-
timates given in Sec. III classified by the exponent and
by the type of weighting (see below). In Sec. IV we give
detailed comparisons of our new estimates with the other
available results and discuss their significance in relation
to the previously controversial aspects of this problem.
Finally, we draw some conclusions in Sec. V, clarifying
the current status of this problem.
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II. NUMERICAL METHOD

In this section, we briefly describe the numerical ap-
proach we have used in this work. Our approach consists
of two parts: we first randomly generated the percola-
tion disorder configurations by Monte Carlo simulation
on grids of prescribed sizes. Then SAW’s were generated
by complete enumeration on each disorder sample. Below
we give some details of these two operations.

While much of the computation was performed on
standard sequential computers, in those cases where the
required CPU time per cluster was small but the required
number of clusters was very large, we have resorted to
massively parallel computation using a network of 64 Sun
workstations. This was done through a prototype paral-
lel toolkit called EcliPSe [26]. Some details of this aspect
are given in the Appendix.

A. Generation of percolation clusters

In this work, the percolation clusters were generated
using site percolation on the square and simple cubic lat-
tice of edge length L. Different values of L were used for
both two and three dimensions in order to test finite size
effects. For the bulk of the data that did not deal with
finite size effects, the largest convenient value of L was
used. In two dimensions, a value of L = 1000 was nor-
mally used, with the computer memory being the main
constraining factor. In three dimensions, L was taken to
be 30 mainly due to the constraints imposed by the way
we define the infinite cluster.

To construct a cluster, each site on the lattice was
assigned to be occupied with probability p. As usual,
occupied nearest neighbor sites are connected together
and the resulting connected components of the lattice
are called clusters. Cluster connectivity was determined
using a breadth first search algorithm. This was done
by going through the lattice and looking for sites that
were not already marked as belonging to a given cluster.
When such a site was found, the entire cluster was burned
[27] from that site and a unique label was assigned to the
elements in that cluster.

If an infinite cluster needs to be identified, the largest
cluster is searched for and checked to see whether or not
it wraps around the lattice in all directions when pe-
riodic boundary conditions are applied. If it does not,
it is rejected and a new disordered lattice is constructed.
Otherwise, it is accepted. The wrapping requirement was
used for two reasons. First, it is a commonly used way
to obtain a model for an infinite cluster on a finite sys-
tem. Also, from a more practical standpoint, the wrap-
ping condition allows us to implement periodic boundary
conditions in all directions and, therefore, to choose the
starting points for the walks without having to worry
about the lattice boundaries. If the given simulation is
concerned with all clusters, then all of the clusters are
used with periodic boundary conditions.

B. Generation of walks

In the case of all cluster (AC) statistics, starting points
for the SAW’s were chosen randomly from the entire lat-
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tice, with each cluster being effectively weighted by the
number of points in the cluster. For infinite cluster (IC)
statistics, the points were chosen at random from the in-
finite cluster. Only one starting point was chosen per
lattice in this case. This was done to prevent unexpected
correlations among the samples which would occur if dif-
ferent starting points were too close to each other. All
walks less than or equal to a given N were then exactly
enumerated. The value of N differed depending on the
other parameters of the calculation. It was important
to have N as large as possible in order to extract the
asymptotic behavior, but not so large that the enumer-
ations would take an unreasonably large amount of time
to complete nor that the size of the SAW becomes com-
parable to the lattice size. Thus the values of N ranged
from 25 to 30.

All walks from a given starting point were completely
enumerated using a very simple recursive procedure. Af-
ter an initial site was chosen, a routine was used that
marked that site as occupied and attempted to walk to all
unoccupied nearest neighbors. If an unoccupied nearest
neighbor site was found, the same routine was again used
with that new site. This happened until the walk had
reached its maximum length or could not find any avail-
able sites. If this occurred, the current site was marked
as unoccupied and the walk retreated to its previous step
and continued to look for different available sites. This
method was used to do all of the walk enumeration.

Two types of averaging were used. The first type of
averaging used was chain averaging. In this method,
each walk from a given starting point was given the same
weight as every other walk of the same number of steps
from that same starting point. This method is the one
used in most enumerations and best represents the model
on which most theoretical calculations are based. In a
polymer solution in random media, it would also repre-
sent the case where the chain conformations are in equi-
librium with the environment.

The other type of averaging used was a kinetically
weighted averaging (previously called walk averaging
[28]). This average weights the contribution of a given
walk to a given measured quantity (such as (R?)) based
on the inverse of the connectivity of the sites in the walk.
Thus, the weight wr, for a given N-step walk I'y can
be written as

(4)

where z; is the connectivity of site j and the product is
over all sites except for the origin of the walk. The factor
of zj—1 for j > 0 reflects the exclusion of the site that the
walk has just left. The chain averaging is just equivalent
to setting w = Cy' for all walks. The kinetic average
emulates the weighting of a standard Monte Carlo sam-
pling method as applied to a diluted space [11] . It may
be described as a kinetic, growing walk (somewhat like
the myopic ant) except that it dies upon encountering its
own track. The kinetic averages tend to have fewer fluc-
tuations than the chain average for similar samples. In a
polymer application, the kinetic averaging may crudely

correspond to the case where the chain is being grown in
situ.

Physically, the chain ensemble appears to be the ap-
propriate one to represent a dilute solution of polymer
chains in porous media in equilibrium. However, the cor-
responding free walk problem showed interesting differ-
ences between the walk and chain averages [29]. The
investigation of possible differences for SAW’s appears
warranted for this reason, as well as for a proper com-
parison with some of the previous Monte Carlo results
[11].

In order to extract the asymptotic exponent, the effec-
tive slope of the plot of In(R?) vs In N was extracted
and plotted against 1/N. In the case of v, we have used
the effective exponent vy as given by the formula

vy = N(R}) B
Wi sy s P

The effective exponent xn was extracted in a similar way,
using var[ln Zy]. Plotted in this way, the asymptotic
value of the exponent should be obtained as N — oo, or
as 1/N — 0. The data is presented in this manner in
order to better observe the asymptotic behavior of the
slope. This also allows us to estimate the error obtained
in the extrapolation of the slope to its N = oo value.

III. RESULTS OF COMPLETE ENUMERATION

In this section, we describe the summaries of the data
and the exponent estimates obtained by analyzing them.
Detailed discussions on their significance are presented
in a separate section following the current one. The final
exponent estimates are also given in Tables I and II for
the chain average and in Tables IIT and IV for the kinetic
average.

A. Chain average results for v

In d = 2, data were collected at p = 0.59273 = p. for
6260 independent infinite clusters, which were divided
into three different runs. These data are shown in Fig. 1.
The graph corresponds to the effective slope plot that was
described earlier. This slope rises gradually from 0.750 to
0.770 and then appears to level off to give an asymptotic
value of v = 0.770 £ 0.005. This general trend of rising
up and leveling off was seen in each of the three batches
separately. The behavior in the case of the all cluster
average also gave an exponent estimate of 0.770 + 0.005
and showed a similar increasing behavior for larger V.
These data were taken from 14530 independent disorder
realizations. Typical error bars are included for each dif-
ferent set of data in Fig. 1 and the following graphs of
the effective value of v as a function of V. These error
bars for the effective slope are calculated directly from
the errors in the end to end distance calculation by prop-
agating these errors through Eq. (5). The errors given for
the values of the exponents here and elsewhere were es-
timated by using the scatter in the effective slope graphs
for the overall data as well as by considering the batch-
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TABLE 1. Estimates of critical exponents v and x for chain
averaging for the square lattice in two dimensions. The data
for p. were collected at p = 0.59273.

P p = pc (IC) P =pc (AC) p = 0.65 > p. (IC)
v 0.770 £0.005  0.770 + 0.005 0.770 £ 0.010
x 0.50 £ 0.01 0.53 £ 0.01 0.47 % 0.01

TABLE II. Estimates of v and x for the chain averaging
for the simple cubic lattice in three dimensions. The data for
p. were collected at p = 0.3117.

P p = pc (IC) p=p. (AC) p=0.4>p: (IC)
v 0.660 £ 0.005 0.645 & 0.005 0.650 & 0.005
X 0.49 £ 0.01 0.55 + 0.01 0.27 + 0.01

TABLE III. Estimates of critical exponents v and x for
kinetic averaging for the square lattice in two dimensions.
The data for p. were collected at p = 0.59273.

P p =pc (IC) P =p. (AC) p = 0.65 > p. (IC)
v 0.760 £0.005  0.755 £ 0.005 0.750 + 0.005
x 0.48 + 0.02 0.63 + 0.03 0.30 £ 0.03

TABLE IV. Estimates of v and x for kinetic averaging for
the simple cubic lattice in three dimensions. The data for
pc were collected at p = 0.3117. x for p = 0.4 suggested a
possibly nonpower law behavior.

P p = p. (IC) p = pc (AC) p=04>p. (IC)
v 0.645 + 0.005 0.625 + 0.005 0.625 + 0.005
X 0.51 + 0.02 0.66 & 0.02
0.8
i o  p=pIC
i A p=pc, AC
£ 078 [ +  p=0.65,IC
> i - o p=1, exact
@ i Qa0 §
o o)
S 076 | % %o
5 i A T ©
S ' ++24a8 8 g R g
[ L
S ++
= 0.74 | + + + T
© i =T
A i o0+ 0o
fa) I Oo-go o
072 | o )
| m]
07 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 [ SN NN S 1

o

0.02 0.04 0.06 0.08 0.1
1N

FIG. 1. Effective slope plot of <RN2> for the chain averages
on d = 2 percolation clusters. In the figure, the symbols O,
A, and + denote p = p. for IC, p = p. for AC, and p = 0.65
for IC, respectively. The symbol I corresponds to the value
of the effective slope as given by Eq. (5) for the full lattice.
All full lattice values are from N. Madras and G. Slade, The
Self-Avoiding Walk (Birkhauser, Boston, 1993).
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to-batch fluctuations in the effective slope graphs of the
individual batches.

For the case of p = 0.65 > p., the picture is similar
to the p = p. case. Because of the CPU time constraint
involved in enumerating a much larger number of walks
than the p = p. case, we were forced to use fewer start-
ing points. This was not a major setback since mov-
ing away from the critical probability caused the fluctu-
ations between averages over different starting points to
be smaller. These data (also shown in Fig. 1) seem to
point to a value of 0.770 & 0.005 for v. The all cluster
average is not expected to be significantly different from
the infinite cluster average for p > p, since the infinite
cluster overwhelmingly dominates for p > p..

In the case of d = 3 percolating clusters, we first took
p = 0.3117 = p. and again performed calculations for
both the infinite cluster and for all clusters. In both
cases, the clusters were constructed on a simple cubic
lattice, where L = 30. The average was taken over 47 830
independent realizations for the case of all clusters, and
20000 clusters for the infinite cluster case. The resulting
graphs for the effective value of (R2?) are shown in Fig. 2.
Both graphs are relatively straight, and the asymptotic
values of their slopes seem to differ. A careful inspection
of the graphs show that ¥ = 0.660+0.005 for the IC case,
and v = 0.645 £ 0.005 for the AC case. The values of the
slopes seem to differ more for larger N, which seems to
imply that most of the longer walks in the all cluster case
are walks which are trapped in isolated clusters (i.e., not
in the infinite cluster).

For p = 0.4 > p., we also measured v. This was done
only on the infinite cluster, but again, for p this large the
result should not differ significantly from the all cluster
result. Again, the disorder configuration was constructed
on a L = 30 cubic lattice. However, due to the increased
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FIG. 2. Effective slope plot of <RN2> for the chain averages
on d = 3 percolation clusters. In the figure, the symbols O,
A, and + denote p = p. for IC, p = p. for AC, and p = 0.4
for IC, respectively. The symbol O corresponds to the value
of the effective slope as given by Eq. (5) for the full lattice.
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density and the greater number of walks, only 3920 clus-
ters were used with N < 25. The graph of the effective
value of 2v is shown in Fig. 2. The graph is very straight,
and shows an asymptotic value of 0.650 + 0.005 for v.

B. Kinetic average results for v

For all of the different types of disorder, the data ob-
tained using the kinetic average showed fewer statisti-
cal fluctuations in two dimensions than their chain av-
eraged counterparts. The extrapolated value for v was
slightly different between the two averages. For the IC
case, we obtained an asymptotic value of 0.760 + 0.005
for v, slightly smaller than the chain average case. The
AC average was almost identical to the IC case with a
value of 0.755 + 0.005, which was again smaller than the
chain average case. Finally, the p = 0.65 case gave a
value which was practically indistinguishable from 3/4.
The effective slope graphs which led to all three results
are shown in Fig. 3.

The case for d = 3 is slightly harder to interpret, due
to the steady downward trend in the effective value of the
exponent for the different cases. To extract the asymp-
totic value of the slope, we also looked at the radius of
gyration average for the same data. In the asymptotic
limit, the average of the radius of gyration should have
the same slope as the mean-square end-to-end distance.
The effective slope generated from this data approached
its asymptotic value from below and thus gives an effec-
tive bound for the N = oo value (see also Ref. [14]).

Using the method described above, the value of v on
the infinite percolating cluster was found to be v =
0.645 £ 0.005. In the case of all clusters at p = p., we
calculated v to be 0.625 £+ 0.005. For p = 04 > p,
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FIG. 3. Effective slope plot of (RN2> for the kinetic aver-
ages on d = 2 percolation clusters. In the figure, the symbols
O, A, and + denote p = p. for IC, p = p. for AC, and

= 0.65 for IC, respectively. The symbol O corresponds to
the value of the effective slope as given by Eq. (5) for the full
lattice.
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FIG. 4. Effective slope plot of (RN2> for the kinetic aver-
ages on d = 3 percolation clusters. In the figure, the symbols
O, A, and + denote p = p. for IC, p = p. for AC, and p = 0.4
for IC, respectively. The symbol O corresponds to the value
of the effective slope as given by Eq. (5) for the full lattice.

the data also seemed to show an asymptotic value of
v = 0.625 + 0.005. Like the two dimensional case, the
exponent data for the kinetic averages are all lower than
their respective chain averages. These data are shown in
Fig. 4.

C. Chain average results for x

Our data for x for p = p. and d = 2 are taken from
the same calculations as for v for the case of the infinite
cluster. These data are shown in Fig. 5. For this case, our
estimate of  is about 0.50+0.01, which is consistent with
a value of 1/2. In the case of the all cluster average, the

0.6
i o p=pc, IC
- A p=p;, AC
i + =0.65, |
5 oss[ P C
5 f A
S [ é%lmﬁ Anan & 008
o] L A A
o ! xS o
3 o
© 05 500 [eXe]
c - o
T I R0 +
(6] 5
cl\'f - H'H'H"'+++++++ " + +
A 045 |
0.4 PR WU VRN U NS ST SN S SR SRS SN SO SN SN S N T S 1
0 0.02 0.04 0.06 0.08 0.1
1/N

FIG. 5. Effective slope plot of x for the chain averages on
d = 2 percolation clusters. In the figure, the symbols O, A,
and + denote p = p. for IC, p = p. for AC, and p = 0.65 for
IC, respectively.
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FIG. 6. Effective slope plot of x for the chain averages on
d = 3 percolation clusters. In the figure, the symbols O, A,
and + denote p = p. for IC, p = p. for AC, and p = 0.4 for
IC, respectively.

data are taken from a set that included 10000 disorder
realizations with N = 25 steps for the SAW’s. It was
necessary to take a larger sample of shorter walks in order
to reduce statistical fluctuations. The data for all clusters
may well point to a slightly larger value for x. Our best
estimate in this case is xy = 0.53 £ 0.01. The data shown
in Fig. 5 seem to strongly suggest that the IC and AC
averages are not the same.

The p = 0.65 case in two dimensions in Fig. 5 shows
a significantly different result than the p = p. case. The
data points to a value of 0.47 £ 0.01 for x. These data
exhibit very little statistical fluctuations and constitute
strong evidence for a new disorder behavior for p > p.,
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FIG. 7. Effective slope plot of x for chain averages ond = 3
percolation clusters at p = p. on simple cubic lattices of vari-
ous size. Different symbols correspond to L = 30 (O), L = 25
(A), and L =20 (+).

FIG. 8. Effective slope plot of x for AC chain averages on
d = 3 percolation clusters for various occupation probabilities
p- Different symbols correspond to p = 0.3117 (O), p = 0.33
(A), p=10.35 (+), p=0.37 (x), and p = 0.4 (o).

different from both that for p. or the pure lattice behav-
ior.

In three dimensions, we calculated x using the same
data sets as were used in the calculation of v. These data
are shown in Fig. 6. The graph for the all cluster average
is fairly straight and yields a value of x = 0.55 & 0.01
in this case. The exponent in the infinite cluster case
is harder to extract since there seems to be a downward
trend in both the p = p. and p = 0.4 case. If these slopes
are linearly extrapolated out to their N = oo limit, one
gets a value of x = 0.49 £ 0.01 for the p = p. case and
x = 0.27+0.02 for the p = 0.4 case. We believe, however,
that this downward trend for large N in the IC case may
be due to finite size effects for the case of p = p.. To
show this, we extracted the effective slope of x for infinite
clusters built on simple cubic lattices of size L = 20 and
L = 25 to compare with the L = 30 case. All three
cases are shown in Fig. 7. This graph explicitly shows
the increasingly downward behavior of x for decreasing
lattice size.

The downward trend in x for p = 0.4 is much sharper,
and significantly different from the p = p. case. In order
to check whether this was the asymptotic value for x for
all p. > p > 1, we also collected exact enumeration data
for various p, where p. < p < 0.4. These results (shown
in Fig. 8) apparently indicate that the asymptotic value
of x decreases with increasing occupation probability p.
This could even imply that the asymptotic behavior of x
for p > p. does not follow a power law.

D. Kinetic average results for x

A corresponding definition of x for kinetic averaging
can be given by

var[lnwy] = (lnwn)? — (lnwy)? ~ N?%, (6)
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FIG. 9. Effective slope plot of x for the kinetic averages on
d = 2 percolation clusters. In the figure, the symbols O, A,
and + denote p = p. for IC, p = p. for AC, and p = 0.65 for
IC, respectively.

where wy is the total remaining weight of all of the N
step walks originating from a given starting point. Thus,
the kinetic x is defined by the variance of the log of the
total amount of weight associated with each walk. Al-
though the amount of weight starts out with a value of
1, weight can be lost at each step if the walk is com-
pletely trapped by the medium (and cannot grow) or if it
intersects itself. This is different from the chain average
where weight is effectively lost any time a vacant site is
encountered during the chain enumeration.

The data for x at p. in two dimensions for the kinetic
average is shown in Fig. 9. The IC average for p = p.
can be extrapolated to get a value of 0.48 £ 0.02. Since
the graph seems to be leveling off, a value 1/2 is certainly
not excluded. Like the chain average, the AC exponent is
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FIG. 10. Effective slope plot of x for the kinetic averages
on d = 3 percolation clusters. In the figure, the symbols O,
A\, and + denote p = p. for IC, p = p. for AC, and p = 0.4
for IC, respectively.
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larger, but in the kinetic average the difference between
the IC and AC cases is much larger. The AC average
points to an asymptotic value of 0.63 +0.03. The asymp-
totic value for x when p = 0.65 > p. seems to be falling
off very rapidly towards a value of 0.30 £+ 0.03, but it is
possible that it could be continuing down even farther.

In three dimensions, the effective slope graph for the
kinetically averaged x is even more similar to the chain
averaged x, but the difference between the IC and AC
case is again more pronounced. The AC case seems to
be approaching a value of 0.66 £ 0.02, while the IC value
is approaching a value of 0.51 & 0.02. Like the chain av-
eraged x, the two- and three-dimensional results show
qualitatively very similar behavior for p > p.. The ex-
ponent x for p > p. seems to be rapidly approaching a
value of zero, which may suggest a behavior that is not a
power law for at least some values of p > p.. These data
are shown in Fig. 10.

IV. DISCUSSION

In this section, we present a detailed comparison of
our enumeration results with other available estimates
and discuss the new findings in the broader perspective.
Unfortunately there seem to be no analytical calculations
which provide the relevant exponent estimates with any
reasonable level of accuracy. Therefore, we first give de-
tailed discussions of the available numerical results, and
at the end offer comparisons with some theoretical pre-
dictions such as mean field and scaling arguments, and
certain renormalization group calculations.

A. Exponent v for the infinite cluster (IC) average
at p = p.

Our present estimates of v = 0.770 £ 0.005 in d = 2
and v = 0.660 £ 0.005 in d = 3 for the chains on the infi-
nite cluster at p = p, represent a refinement of the values
that were proposed in several other works recently. Our
values are expected to be much more precise than ear-
lier estimates due to the fact that all walks from a given
starting point are enumerated, and the number of disor-
der configurations chosen was very large. This precision
is best seen by the fact that it passes the very stringent
criterion of having the plot of the effective slope as a
function of the number of steps show very little statisti-
cal fluctuation. Vanderzande and Komoda [17] obtained
the result v = 0.77 & 0.01 for chains on the IC using
the exact enumeration method. They defined their infi-
nite cluster as a cluster which spanned the entire lattice,
as opposed to our condition that it wrapped in every di-
mension. We tried both types of requirements for our
IC results and found little difference between them. The
wrapping condition was chosen for our results since it
allowed us to use periodic boundary conditions and to
choose our starting point anywhere inside the cluster.
Infinite clusters defined by the wrapping condition were
also used in Ref. [14] for the three-dimensional case. They
obtained a value of 0.65 + 0.01 for v.
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Many previous IC results were obtained using in whole
or in part a Monte Carlo simulation. Among them,
the work of Ref. [11] arrived at the conclusion that the
asymptotic estimate of v changed very little by lattice
dilution, even at the critical dilution. These simulations
were performed on wrapping clusters as in this work but
with kinetic averaging. Thus, we postpone the discussion
on those results toward the end of this subsection where
we focus on the kinetic averaging.

Some of the other previous works for IC configurations
were performed using a different type of infinite cluster.
In this situation the infinite cluster was chosen based on
a predetermined maximum chemical distance from a seed
site chosen on the cluster. For some of these enumera-
tions, the clusters were grown with the standard Leath
algorithm [30]. This algorithm starts with a seed site and
grows the cluster in shells around that site. If any config-
uration that contains at least one walk (no single isolated
sites) is accepted, and walks are enumerated from the
seed, the resulting average is an AC average. However,
if the configurations are only accepted after growing a
certain chemical distance M, then the clusters were con-
sidered infinite clusters. This method has an advantage
in that there are no boundary conditions to consider,
and in some cases is more computationally efficient than
generating random numbers for the occupation at each
site of a large hypercubic lattice. However, it does have
problems. The choice of M which defines the IC is not
as directly related to the length scale of the cluster as L
is when clusters are generated on a periodic lattice.

This type of IC was recently used by Grassberger [18]
to obtain results for v in two dimensions. For this simula-
tion, he chose only those clusters with a chemical distance
> 200. This Monte Carlo simulation was different than
most previous ones because it first evaluated the average
connectivity of the cluster, and then chose the sampling
probability based on that. For v on the IC in two di-
mensions, he calculated a value of 0.786 £ 0.003. This
number was obtained by taking walks up to a maximum
of 100 steps [and using O(10*) different configurations to
average over disorder]. However, even for N this large,
the average number of walks per sample was approxi-
mately 5000. Although the method Grassberger used to
obtain this value certainly should be sound, it seems un-
likely that such a small error bar could be assigned from
a simulation that used so few walks per disorder sample.

It is interesting to note that the kinetic average re-
sults on the infinite cluster indicate a somewhat smaller
v than the chain averaged results. The difference between
the two cases is small, but appears to be significant. To
understand why the kinetic average gives a smaller ex-
ponent, it is important to note the main difference be-
tween the two averages. In the kinetic average, an N step
walk a will carry with it a certain weight, w,, relative
to the rest of the IV step walks. All of the N + M step
walks which originate from a will have a total weight of
Wq, minus the weight of the walks lost due to collisions
and trapping. In the chain average, however, the relative
weighting of all of the N + M step walks will depend on
the total number of N + M step walks.

Now consider a walk which leaves a very highly con-
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nected part of the cluster, such as the backbone, and
moves on to a dangling end. This walk, and all of the
longer walks that it generates, will be trapped on this
dangling end, and won’t be able to travel very far. In
the chain average, these walks will not carry much of
the weight since many more walks will be generated on
the highly connected part of the cluster. However, in
the kinetic average, these walks will still contribute total
weight equal to the weight of the original walk, until they
eventually begin to die out after getting trapped. Be-
cause of this, these trapped walks will contribute a much
larger contribution to the total average while they are
alive. Since the dangling ends occur on all length scales,
there will always be these contributions which keep the
kinetic exponent lower.

A seemingly puzzling fact is that, for most values of N
considered in this paper, the actual average end-to-end
distance of the walks in the kinetic average is larger than
those from the chain averaging [14]. This is because,
for these values of N, the walks on the dangling ends
(which are more spread out and less compact than the
rest of the cluster) contribute a larger end-to-end distance
towards the average than the chains on the dangling ends.
However, when these walks on the dangling ends die out
due to trapping, their contribution towards the kinetic
average is lost much faster than the contribution to the
chain average. The net result is a larger increase in <R2>
for the chains and therefore a larger v. This, of course,
means that, eventually for much larger N, the value of
(R?) must be larger for the chain averaging.

We tested this idea by performing the same two aver-
ages with the walks constrained to move on the backbone
of the infinite cluster. The backbone was defined as the
multiply connected part of the infinite cluster defined
previously, when periodic boundary conditions were ap-
plied. Since the dangling ends are now removed, the walk
and chain averages should be approximately the same.
As seen in Fig. 11, both graphs are almost exactly the
same for large values of N, and are both extrapolated to
a value of v = 0.775 £ 0.005. This result is very simi-
lar to that of Woo and Lee [31] which quoted a value of
0.77 + 0.01 for v on the backbone of the infinite cluster
on the square lattice.

We now return to the discussion of Ref. [11]. These
simulations were carried out with statistical weights as
in our kinetic averaging. However, their results obviously
do not agree with the present calculation for the IC av-
erage at p = p.. A careful analysis of those data in fact
suggests that they were not representative of the true av-
erage properties of the walk. The main reason that the
exponent for the diluted case appeared to be the same as
the full lattice is believed to be as follows: The specific
Monte Carlo method that was used attempted a fixed
number of walks from each starting point. For large N,
most of these walks died out on the diluted lattices. If all
of the walks died out on a lattice for a given N, then it
was not counted in the ensemble average. Unfortunately,
there were so few walks (on the order of several hundred)
attempted from each starting point that only the start-
ing points which happened to be on the very dense parts
of the IC survived to contribute for large N. In other
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FIG. 11. Effective slope plot of <RN2> for kinetic and chain
averages on the backbone of d = 2 percolation clusters at
p = pc. In the figure, the symbols O and A denote chain and
kinetic averages, respectively.

words, starting points in sparse regions were systemat-
ically excluded from the averaging process. Because of
this, the results were biased toward the dense clusters,
and therefore the v that was measured was too small.

We have verified this scenario by performing simula-
tions under the same condition as in Ref. [11], and found
that if more walks are attempted from each starting
point, a value of v more consistent with the enumeration
results is obtained. In fact, the number of attempted
walks from each starting point in Ref. [11] corresponds
roughly to that for which on average only one walk would
survive the attrition at about the number of steps N
where those early simulations reported a downward (or
leveling) trend for their estimates of the effective expo-
nent vy. We also verified that having a large number of
starting points per cluster did not significantly affect the
results.

B. Exponent v for all cluster (AC) average at p = p,

The AC value of v at p = p. has perhaps been the
most studied and most debated of all of the quantities
discussed in this paper. Our estimate of 0.770 £ 0.005
in two dimensions shows that the value of v is definitely
larger than the full lattice value of 0.75. Besides the
data shown in Fig. 1, we also performed many enumer-
ations which used slightly smaller maximum lengths but
many more disorder configurations. These runs also gave
an asymptotic value of 0.770 for v in the AC case, and
showed no fluctuations that could possibly point to a
value at or lower than 0.75.

There were also previous enumeration works [14] per-
formed to determine v in two and three dimensions. In
those works, the clusters were generated using the shell
method described earlier, requiring each disorder config-
uration to have at least 200 shells in two dimensions.

Averaging over 1000 different disorder configurations, a
value of v = 0.78 + 0.01 was obtained. Although the re-
quirement that the clusters have at least 200 shells causes
the result to lie somewhere between the AC and IC cases,
this result is still a useful one since both ensembles give
approximately the same answer. In Ref. [18] Grassberger
obtained a value of 0.785 £ 0.003 for v in the AC, p = p,
case, based on his incomplete enumeration. While our
analysis does show that there could still possibly be some
upward trend in the estimates of v, we do not believe that
its value would be quite as large as in Ref. [18].

These works seemed to settle the question of whether
or not the value of v in two dimensions increases from the
full lattice value to the case of critical dilution. However,
there have been a few recent works that still put the
value for v in the AC case to be possibly equal to that of
the fully occupied lattice. In Ref. [17], Vanderzande and
Komoda estimated a value of v = 0.745+0.010. Although
this was an exact enumeration performed in a way almost
identical to our own, their value was significantly lower.
This is possibly due to the fact that they did not attempt
to extract the asymptotic value of the slope. For smaller
N the value of the slope is less than 0.75, so a least-
squares fit to the data that included these small N values
could possibly yield a number that low. Woo and Lee
[31] also gave a value of approximately 0.75 for the AC
average. This is probably related to the fact that they
used a Monte Carlo method with weighting more similar
to a kinetic average than to a chain average. To test
this, we attempted a similar simulation with the same
parameters as Ref. [31] and also obtained a value of v =
0.75.

In three dimensions, the differences between the AC
and IC averages at p = p. are much more significant than
the d = 2 case. As stated earlier, this is probably due to
the fact that the IC makes up a much smaller fraction
of the disorder configuration, and most walks find them-
selves trapped on smaller isolated clusters. Reference [14]
obtained an estimate of v = 0.65 + 0.01 by an enumera-
tion of 5200 different clusters. These clusters were grown
with the shell method and required to have at least 95
shells. Vanderzande and Komoda [17] also studied the
d = 3 case with the enumeration method and got a value
0f 0.63510.010 for the AC case, which is compatible with
our value within the error bars. Unlike their result in two
dimensions, we would expect their estimate in three di-
mensions to be close to ours even though they do not try
to extrapolate their value out to N = oo. This is due to
the fact that the effective exponent in the d = 2 case has
an upward trend for larger N, while the effective expo-
nent in the d = 3 case remains relatively constant for all
N.

A different sort of exact enumeration was recently re-
ported by Smailer et al. [32] to extract v for a continuous
disorder instead of a discrete disorder as in percolation.
This means that the space is not divided into regions of
different, discrete statistical weights (or equivalently en-
ergy cost) as in percolation (where accessible sites have
zero energy and the inaccessible sites have infinite en-
ergy barrier), but each site or point in space is associ-
ated with a continuously varying energy cost of hosting a
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part of the chain. The basic assumption in this work ap-
pears to be that the finite temperature asymptotic prop-
erties of the SAW in a quenched, continuously random
environment are governed by the zero temperature fixed
point, and that the properties of this latter fixed point
would correspond to the discrete percolation disorder at
p > p.. They then calculate the zero temperature proper-
ties in the continuous disorder problem by looking at the
minimum energy SAW by complete enumeration. More
specifically, they considered the minimum energy SAW
of length N (where N < 20) in a square and simple
cubic lattices where the lattice sites were assigned en-
ergies based on a given distribution, and then averaged
the properties of the minimum energy walks over many
(~ 105) disorder configurations. In two dimensions, two
different energy distributions were studied. For a Gauss-
ian distribution with mean 0 and variance 1, a value of
v = 0.8110.02 was obtained, while a uniform distribution
of energies between 0 and 1 gave a value of v = 0.80+0.02.
In three dimensions, just the uniform distribution was
studied and a value of v = 0.71 £ 0.03 was calculated.

Although in their work [32] they compared the expo-
nent estimates they obtained with other, previous esti-
mates for the percolation disorder at p = p., they should
be properly compared with the percolation results for
p > p.- In any case, these values, especially the value
in three dimensions, seem to be much larger than those
obtained for the percolation disorder results for p = p.
(this work as well as Refs. [14] and [17]), and also more
than those for p > p. from our present calculations (see
below).

C. Exponent v for p > p.

The result for p = 0.65 > p. in d = 2 is also very
interesting. While most previous works indicated that
many of the asymptotic properties of the SAW in the
Pc < p < 1 regime should be the same as for p = 1,
our data seem to indicate otherwise. This was also true
with the data from Ref. [18], although Grassberger again
obtained a number which is significantly larger than ours
(0.815+0.005). The data from Ref. [17], however, gave a
value of 0.75 £ 0.01 for this case. This is somewhat lower
than our value and happens to be equal to the value for
p = 1. We note that Ref. [17] stated that only a few
hundred different starting points were used for large p.
Even though the fluctuation is generally less for p > p.
and a smaller sample space would give adequate results,
for data in batches of that size we certainly observed
fluctuations large enough to account for the difference.
In addition, this difference could also be partly due to the
fact that the slope was not extrapolated, as we discussed
about their data for the p = p. case.

Like the d = 2 case, the value of v for p = 0.4 > p,
in three dimensions was definitely not equal to the full
lattice value, but was found to equal 0.650 & 0.010. This
is also very similar to the value of 0.645 £ 0.010 reported
in Ref. [17].
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D. Exponent x for p = p. and p > p.

The values of x obtained for the p = p. cases are im-
portant because they represent a quantity which could be
used to distinguish between the IC and AC cases. In both
two and three dimensions, the AC exponent is clearly
larger than the IC exponent. This is one of the best in-
stances of an exponent which gives a clear numerical dif-
ference between these two cases. Since the significance of
x was mentioned only recently [13], there have been few
numerical studies done to measure it. Vanderzande and
Komoda calculated x in Ref. [17], but instead of using
var[ln Zy], they used var[ln(Zy + 1)] [33]. Although the
difference between these quantities is small, it may be
sufficient to affect the estimate of x. In fact, it is easy to
show that the leading order difference between these two
terms is

2 (In(Zn)) <%> - )

This term is very small for large Zx, but for small values
of N it can be significant. This point is illustrated in
Fig. 12. Because of this, their data points for small N
are displaced downward and the fitted value of the slope
is biased toward a greater value. Their estimates for the
AC case of x in two and three dimensions at p = p.
were 0.65+0.02 and 0.64 + 0.02, respectively, in contrast
to our much smaller estimates (cf. Table II). When we
used the same quantities, var[ln(Zy)] to test this idea, we
obtained graphs and resulting exponent estimates quite
similar to theirs.

Also, the behavior of x for p > p. was examined. The
values that we obtained for the specific values of p (p =
0.65ind = 2 and p = 0.4 in d = 3) were much lower than
for p = p., possibly indicating a new disorder fixed point
for p. < p < 1. Our estimates appear to be consistent
with those given in Ref. [17], (0.43 for p = 0.65 in d = 2
and 0.33 for p = 0.4 in d = 3) although no error bars
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FIG. 12. Plot of var[ln(Z§¥)] vs N, where the symbol O
corresponds to Z5 = Zn (our method) and the symbol A
corresponds to Z5' = Zn + 1 (as in Ref. [17]).
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were given in their results. We do not expect there to
be a problem with the fact that they were measuring
In(Zn + 1) in this case since they explicitly stated that
they extracted x from their data for larger N. Although
it is very clear that x indicates a different behavior for
p > pc than for p = p., it is not at all clear that there
was a similar behavior for all p. < p < 1. We note that
for larger p, it even seemed possible that var[ln Zy] did
not follow a power law behavior.

Finally we looked at x for kinetically averaged walks
in a disordered medium. This average describes walks
that would be formed if they were grown in the medium.
The behavior of x for these kinetically averaged walks
displayed the same qualitative behavior as those walks
which were averaged according to the chain statistics.
However, the difference in x at p. for the AC and IC
cases was much more pronounced in the kinetic case.

Values of x were also calculated by Smailer et. al. in
Ref. [32]. They obtained a value of 0.28 £ 0.03 for x in
two dimensions and 0.15 £ 0.03 in three dimensions. As
previously mentioned, these values probably correspond
more to the p > p. values than to the p = p. values.
These values are considerably smaller than the values
we have measured using the chain averaging for p > p..
However, they are somewhat similar to the values we
obtain using kinetic averaging.

E. Comparison with theoretical predictions

So far, we have only discussed available numerical es-
timates in comparison with our current results. Here we
will give a short discussion of the comparison of our nu-
merical results with the analytically obtained estimates.
This discussion is only meant as a numerical compari-
son and the reader is referred to the original works for
the theoretical arguments which led to the numbers we
discuss.

In Ref. [13], Le Doussal and Machta used real space
renormalization, field theoretic renormalization, and
Flory type mean field arguments to study this problem.
As for the field theoretic studies, they concluded that
the previous study [12] was incorrect and that their own
work was inconclusive and that more work was called
for. On the other hand, their real space renormalization
group study used hierarchical lattices to numerically esti-
mate the value of v and x on percolation clusters. Their
numerical estimates were significantly different than the
ones obtained here for percolation clusters on Euclidean
lattices. For v (referred to as ( in Ref. [13]) at p = p.,
they obtained a value of 0.850, and for p. < p < 1, they
find v = 0.862. Although no direct claim was made as
to what percolation system their model corresponded to,
the hierarchical lattice used was the one they referred to
as a two-dimensional model. However, there seems to
be no way to reconcile these numbers with the ones we
obtained and other numerical estimates available in the
literature. Even their full lattice value of 0.847 does not
seem to fit in with any usual percolation system. Their
estimate of x for that same system was 0.48 at p = p.
and 0.29 for p. < p < 1, again much different from the
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values we find (noting, particularly for p., that their re-
sults are more closely interpreted as the AC ensemble
results). However, the prediction that the variation of v
between p = 1 and p. < p < 1 is about 2% is not too
far from what we find (2.7%), although we disagree with
their prediction that v at p. is within 1% of its value for
the full lattice. In short, their real space renormalization
results do not agree with our present ones quantitatively
although there are some qualitative agreements.

The same paper also provides various mean field ar-
guments to derive expressions for v and x in terms of d
and v, the pure lattice value for v. These expressions
were derived with no consideration for the critical disor-
der, and thus should presumably correspond to the case
Pe < p <1 at best.

The first set of expressions they obtain are

1
T 14d(1-w)/2’

x1(d) = v1(1 — dvp/2) =

V1(d) (8)

1 —dl/o/2

1+d(1—1)/2 ®)

These expressions [13] follow from the known scaling be-
havior [34] of the probability distribution for the size of
the pure SAW in the stretched region and dimensional
analysis. The first formula gives values of 0.8 and 0.618
for v; in two and three dimensions, respectively. These
values are not very far from those we obtained, especially
in two dimensions. However, the values for x; is 0.2 in
two dimensions and drops to 0.07 in three dimensions.
These values of x; do not correspond well to our esti-
mates either for p. < p < 1 or at p = p..

Their alternative Flory arguments led to several other
possible expressions. For example, by expanding on the
idea that the disorder introduces an effectively attrac-
tive interaction among the replicas (when the problem is
formulated using the replica technique [35]), they obtain

2—dl/0

= 3 dvy (10)

X2

This expression gives the values of 1/3 for two dimen-
sions and 0.19 for three dimensions. Again this prediction
is quantitatively not very good; however, the decreasing
trend of x for increasing dimension (for p. < p < 1) does
appear to be given correctly. Yet another Flory expres-
sion they provide is

V3 = 1, (11)
X3 = 1- du0/2. (12)

This set of expressions follow from a Flory argument
where the effect of random environment is treated only
dimensionally. The predicted values are again not quan-
titatively acceptable for any value of p.

Obukhov [19] proposed a relation between x and v,

x=2v-1. (13)

This result would follow if one assumed that the fluctu-
ation VX in In Zn were accounted for by the stretching
entropy of the form R2?/N. Like the relations proposed
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in Ref. [13], this expression would apply for p. < p < 1
and not for p = p,, if at all. Indeed, our numerical values
are in reasonably good agreement with this relation for
p > pc, but not for p = p.. It is interesting to note that
the goodness of this relation may suggest that the effect
of self-avoidance is only to rescale R and the fundamental
relation between R and the fluctuation in In Zy remains
unaffected (at least for p. < p < 1).

While most of the above discussions in fact concerns
p > p, there exist also a large number of Flory type pre-
dictions for the exponent v at p. in the literature (but so
far not for x). Most of these arguments use the fractal
dimension dy of the critical percolation cluster or that of
the backbone, d? to take account of the underlying ge-
ometry. This seems to imply that they are all specifically
for the IC ensemble and not for AC. (Note, however, that
Ref. [10] discussed the relationship between the exponent
v in the two ensembles and Ref. [36] which argued that
they are the same.) Simplest of these mean field expres-
sions is

3

= _—— 14
V=g (14)

which follows by substituting ds for the Euclidean dimen-
sion d in the corresponding full lattice Flory expression
[6]. Somewhat ironically, this turns out to yield a very
good numerical agreement, giving 0.77 for two dimen-
sions and 0.66 for three dimensions.

Many of the more complicated predictions, all of which
arise from some form of mean field approximation, were
summarized in a brief paper by Kim [37]. Roughly, there
are two types of such approximations; in one type, dif-
ferent formulas follow because of the different postulated
forms of the entropic contribution to the Flory free en-
ergy, while in the other type, the argument is based on
the dimer formation of two SAW’s. In both cases, the
possibility of using either the full fractal dimensionality
ds or the backbone fractal dimensionality d? effectively
doubles the number of different predictions. There are far
too many formulas to reproduce here and their predicted
values for v at p. range from about 0.71 to 0.78 in two
dimensions and from 0.61 to 0.66 in three dimensions,
the variation being partly due to the uncertainties in the
fractal dimensionalities needed to evaluate the formulas.

The most notable feature of these Flory predictions is
that they all produce reasonable numerical predictions
and, since there is no reason in general to expect a Flory
prediction to be eract, we cannot rule out any of them
simply because of a slightly worse agreement with the
numerical results. This means that we cannot at this
time rule in favor of or against the respective assump-
tions in the form of the entropic term in the free energy
which resulted in different Flory formulas. It is, however,
ironic that the most simple minded Flory approximation
Eq. (14) gives the best and almost exact agreement with
our results. This might mean that the effect of critical
disorder is mainly to affect the scaling behavior of the in-
teraction term and the form of the entropic contribution
largely remains unaffected. Such a scenario cannot be en-
tirely correct, however, for it could not possibly explain
the results for p > p..

V. CONCLUSIONS

Having performed a large scale complete enumeration
work and having made detailed comparisons with other
available estimations of the relevant exponents, we would
like to offer some concluding remarks.

We believe that, this work, along with some other re-
cent works, definitely rules out the possibility that the
value of v for critically disordered media is unchanged
from its full lattice value in two and three dimensions.
In both cases, the value is distinctly larger. We even find
very strong evidence that the value of v is increased from
the full lattice value for p significantly above the perco-
lation threshold. We also find very strong evidence that
the kinetic averaging gives a slightly lower value of v for
some cases of disorder due to probability trapping, and
present numerical data to verify this explanation. Also,
the results of previous Monte Carlo simulation [11] which
gave incorrect results are explained.

The exponent x was also studied in great detail, and
many previously unknown properties were recognized.
The values of x on the infinite cluster and on all clus-
ters are significantly different. This is one of the clearest
examples of a critical exponent giving different results for
these two ensembles. Also, our initial numerical studies
of x suggest that its behavior may not be the same for
all p. < p < 1, and the variance of In Zy may not even
follow a power law in this regime. However, definite con-
clusions on this point cannot be drawn from the present
work alone and must await further investigation.

With regard to the status of theoretical understanding,
it seems appropriate to say that currently there exists no
theory that is quantitatively acceptable as the solution
to this problem. This would include real space renormal-
ization, field theoretic renormalization, and various mean
field approximations. In particular, there seems to be no
good mean field approximation for the exponent x either
at p. or for p. < p < 1. Many Flory approximations
for v give reasonable predictions for v, but the simplest
possible, uncontrolled approximation happens to give the
best agreement. We interpret this as an indication that
the basic physics of this problem is still not understood.
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APPENDIX: MASSIVELY PARALLEL
COMPUTATION

Many of the results described in this paper were
obtained on a Kubota Pacific Titan P-3000 mini-
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supercomputer. The average CPU time taken for an enu-
meration with a particular occupation probability and
disorder type was about 5000 minutes in total. For some
of the higher occupation probabilities, a prototype KPC
K-3400 Alpha AXP workstation was used. These plat-
forms are of a standard sequential type. However, for
some parts of the enumeration work, we have made use
of massively parallel computation over a distributed set
of Sun workstations.

Specifically, a massively parallel algorithm was used to
generate the data for cases where the average run time
per cluster was small, but the number of clusters needed
was very large. This was done using a prototype package
called EcliPSe [26]. EcliPSe is a library which supports
concurrent execution of applications over machines which
are connected via a network as well as on parallel hard-
ware such as the Intel iPSC860. In our case, the enumer-
ation task was spread over 64 Sun-4 workstations. These
machines were intended primarily for instructional pur-
poses and we were able to take advantage of the school
vacation periods when they were largely idle.

Parallelization of the algorithm was performed in col-
laboration with the developers of the toolkit [38], and
was not difficult in technical terms. The task of gener-
ating a cluster, choosing a starting point for the walks,
and enumerating them was assigned to every machine.
As the machines finished their task and reported their
results, they were asked to repeat the process. This was
done until a preset number of clusters were assigned.

In a practical sense, however, the notion of paralleliz-
ing a number of processes whose run times vary greatly
presents some problems. This was the case with the
enumeration of the walks. Most importantly, one must
choose a fixed number of walks and run the enumeration
to completion. This can be understood by first looking
at the case of running the different batches sequentially.
If we stop the enumeration at a random time and reject
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the enumeration from the current starting point, we are
more likely to be rejecting a longer run and are biasing
the statistics toward the clusters with fewer walks. Sim-
ilarly, if we stop the simulation and accept the current
starting point we are biasing the results toward the clus-
ters with more walks.

If we now consider a similar situation, but with a large
number of processors all working at once, the problem
becomes worse as the results from the shorter enumera-
tions pile up very quickly. If we stop all the processes at
a random time, and reject all of the enumerations that
all of the NV processors are working on, we are effectively
eliminating the NV longest enumerations from the results.
Since the distribution is so wide in the case of SAW’s on
disordered media, this makes the results of a prematurely
terminated job useless, unless there are many orders of
magnitude more clusters than processors.

Another practical problem which arose from the wide
distribution of the number of walks is that of paralleliza-
tion efficiency. Since some of the enumerations took much
longer than others, there was a great deal of dead time
at the end of the job as most of the processors were idle
while the last few were finishing up. This was a signif-
icant problem since the total number of starting points
was only a couple of orders of magnitude more than the
number of processors. In some cases, the amount of time
spent waiting for the last 10 enumerations to finish was
as large as the amount of time spent on all of the previous
enumerations (= 5000). This effect cut our paralleliza-
tion efficiency from 64 (the total number of processors)
effectively to about 30 or 40, depending on the parame-
ters. A way of reducing this effect would be to generate
all of the clusters and starting point first, and then es-
timating the number of walks in each case using some
sort of Monte Carlo method. Then, the clusters could
be ordered with respect to the estimated time that they
would take, and the larger ones could be started first.
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